Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414241

ABSTRACT

In chronic liver diseases, hepatic stellate cells (HSCs) are induced to form the myofibroblasts responsible for scar formation, leading to liver fibrosis and cirrhosis. Here, single-cell RNA sequencing with in vivo lineage tracing in nonalcoholic steatohepatitis (NASH) model mice reveals a subpopulation of HSCs transitioning back to a state resembling their developmental precursors, mesothelial cells (MCs), after liver injury. These damage-associated intermediates between HSCs and MCs (DIHMs) can be traced with a dual recombinase system by labeling Krt19-expressing cells within prelabeled Pdgfrb+ HSCs, and DIHMs highly express inflammation- and fibrosis-associated genes. Cre and Dre-inducible depletion of DIHMs by administering diphtheria toxin reduces liver fibrosis and alleviates liver damage in NASH model mice. Importantly, knockdown of Osr1, a zinc finger transcription factor of the OSR gene family, can block DIHM induction in vitro. Conditional knockout Osr1 in Pdgfrb-expressing mesenchymal cells in NASH model mice can reduce liver fibrosis in vivo. Our study collectively uncovers an injury-induced developmental reversion process wherein HSCs undergo what we call a mesenchymal-to-mesothelial transition, which can be targeted to develop interventions to treat chronic liver diseases.

2.
iScience ; 26(12): 108532, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38144457

ABSTRACT

In prolonged liver injury, hepatocytes undergo partial identity loss with decreased regenerative capacity, resulting in liver failure. Here, we identified a five compound (5C) combination that could restore hepatocyte identity and reverse the damage-associated phenotype (e.g., dysfunction, senescence, epithelial to mesenchymal transition, growth arrest, and pro-inflammatory gene expression) in damaged hepatocytes (dHeps) from CCl4-induced mice with chronic liver injury, resembling a direct chemical reprogramming approach. Systemic administration of 5C in mice with chronic liver injury promoted hepatocyte regeneration, improved liver function, and ameliorated liver fibrosis. The hepatocyte-associated transcriptional networks were reestablished with chemical treatment as revealed by motif analysis of ATAC-seq, and a hepatocyte-enriched transcription factor, Foxa2, was found to be essential for hepatocyte revitalization. Overall, our findings indicate that the phenotype and transcriptional program of dHeps can be reprogrammed to generate functional and regenerative hepatocytes by using only small molecules, as an alternative approach to liver repair and regeneration.

4.
Plant Physiol Biochem ; 167: 619-629, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34479030

ABSTRACT

Lily is one of the most economically important flowers worldwide due to its elegant appearance and appealing scent, which is mainly composed of monoterpene ocimene, linalool and benzenoids. Sugars are the primary products of plants, with fructose and hexose sugars being the substrate material for most organic compounds and metabolic pathways in plants. Herein, we isolated and functionally characterized hexokinase (LoHXK) and fructokinase (LoFRK) from Lilium 'Siberia' flower, which indicated their potential roles in floral aroma production. Real-time PCR analysis showed that LoHXK and LoFRK were highly expressed in the flower filament. Overexpression and virus-induced gene silencing (VIGS) assays revealed that LoHXK and LoFRK significantly modified the emission of ß-ocimene and linalool contents via regulation of expression of key structural volatile synthesis genes (LoTPS1 and LoTPS3). Under exogenous glucose and fructose application, the volatile contents of ß-ocimene and linalool were increased and the expression levels of key structural genes were upregulated. The emission of ß-ocimene and linalool followed a diurnal circadian rhythm. Determination of carbon fluxes via 13C-labeled glucose and 13C-labeled fructose experiments showed that the mass spectra of ocimene and linalool significantly increased, however, the m/z ratio of ethyl benzoate did not change. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that LoFRK interacted with LoMYB1 and LoMYB2 proteins. Together, these results suggest that hexokinase and fructokinase may play significant roles in the regulation of ocimene and linalool biosynthesis in Lilium 'Siberia'.


Subject(s)
Fructokinases , Hexokinase , Lilium , Odorants , Flowers/enzymology , Fructokinases/genetics , Gene Expression Regulation, Plant , Hexokinase/genetics , Lilium/enzymology , Lilium/genetics
5.
Cancer Cell Int ; 17: 91, 2017.
Article in English | MEDLINE | ID: mdl-29118671

ABSTRACT

BACKGROUND: miRNAs are regarded as molecular biomarkers and therapeutic targets for colorectal cancer (CRC), a series of miRNAs have been proven to involve into CRC carcinogenesis, invasion and metastasis. Aberrant miR-422a expression and its roles have been reported in some cancers. However, the function and underlying mechanism of miR-422a in the progression of CRC remain largely unknown. METHODS: Real-time PCR were used to quantify miR-422a expression in CRC tissues. Both vivo and vitro functional assays showed miR-422a inhibits CRC cell proliferation. Target prediction program (miRBase) and luciferase reporter assays were conducted to confirm the target genes AKT1 and MAPK1 of miR-422a. Specimens from 50 patients with CRC were analyzed for the correlation between the expression of miR-422a and the expression of the target genes AKT1 and MAPK1 by real-time PCR. RESULTS: MiR-422a was down­regulated in CRC tissues and cell lines. Ectopic expression of miR-422a inhibited cell proliferation and tumor growth ability; inhibition of endogenous miR-422a, by contrast, promoted cell proliferation and tumor growth ability of CRC cells. MiR-422a directly targets 3'-UTR of the AKT1 and MAPK1, down-regulation of miR-422a led to the activation of Raf/MEK/ERK and PI3K/AKT signaling pathways to promote cell proliferation in CRC. In addition, miR-422a expression was negatively correlated with the expressions of AKT1 and MAPK1 in CRC tissues. CONCLUSION: miR-422a inhibits cell proliferation in colorectal cancer by targeting AKT1 and MAPK1.

6.
J Exp Clin Cancer Res ; 35(1): 152, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27669982

ABSTRACT

BACKGROUND: Transducin-like enhancer of Split3 (TLE3) serves as a transcriptional corepressor during cell differentiation and shows multiple roles in different kinds of cancers. Recently, TLE3 together with many other genes involved in Wnt/ß-catenin pathway were detected hyper-methylated in colorectal cancer (CRC). However, the potential role and the underlying mechanism of TLE3 in CRC progression remain scarce. METHODS: Gene expression profiles were analyzed in The Cancer Genome Atlas (TCGA) microarray dataset of 41 normal colorectal intestine tissues and 465 CRC tissues. Western blot and Real-time Quantitative PCR (RT-qPCR) were respectively performed to detect protein and mRNA expression in 8 pairs of CRC tissue and matched adjacent normal mucosa. Immunohistochemistry (IHC) was conducted to evaluate TLE3 protein expression in 105 paraffin-embedded, archived human CRC tissues from patients, whose survival data were analyzed with Kaplan-Meier method. In vitro experiments including MTT assay, colony formation assay, and soft agar formation assay were used to investigate the effects of TLE3 on CRC cell growth and proliferation. Additionally, subcutaneous tumorigenesis assay was performed in nude mice to confirm the effects of TLE3 in vivo. Furthermore, gene set enrichment analysis (GSEA) was run to explore potential mechanism of TLE3 in CRC, and then we measured the distribution of CRC cell cycle phases and apoptosis by flow cytometry, as well as the impacts of TLE3 on MAPK and AKT signaling pathways by Western blot and RT-qPCR. RESULTS: TLE3 was significantly down-regulated in 465 CRC tissues compared with 41 normal tissues. Both protein and mRNA expressions of TLE3 were down-regulated in CRC compared with matched adjacent normal mucosa. Lower expression of TLE3 was significantly associated with poorer survival of patients with CRC. Besides, knock down of TLE3 promoted CRC cell growth and proliferation, while overexpression of TLE3 showed suppressive effects. Furthermore, overexpression of TLE3 caused G1-S phase transition arrest, inhibition of MAPK and AKT pathways, and up-regulation of p21Cip1/WAF1 and p27Kip1. CONCLUSION: This study indicated that TLE3 repressed CRC proliferation partly through inhibition of MAPK and AKT signaling pathways, suggesting the possibility of TLE3 as a biomarker for CRC prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...